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FOREWORD

Increasing power requirements for evolving naval systems have provided a
strong incentive to improve the present lithium thermal battery technology.
Improvements benefit missile, small vehicle, and sonobuoy capabilities. The
Electrochemistry Branch (Code R33) of the Naval Surface Warfare Center
(NAVSWC) has continued to study developments over the last 10 years and examine
promising avenues for further advancement of the technology. This report
summarizes these avenues for advancement.

The authors would like to acknowledge the many Navy, Army, Air Force, and
Department of Energy program offices, laboratories, and centers that have supported
thermal battery efforts in the past, without whom the current technology would not
be possible. We would also like to thank the two U.S. thermal battery manufacturers
for their willingness to share their knowledge so readily: Eagle-Picher of Joplin,
Missouri, and Saft America of Cockeysville, Maryland.

Approved by:

R'. A.
CARL E. MUELLER, Head
Materials Division
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ABSTRACT

Thermal batteries are primary reserve electrochemical power sources using
molten salt electrolytes which experience little effective aging while in storage or
dormant deployment. Thermal batteries are primarily used in military applications,
and are currently used in a wide variety of Navy devices such as missiles, torpedoes,
decoys, and training targets, usually as power supplies in guidance, propulsion, and
Safe/Arm applications.

Technology developments have increased the available energy and power
density ratings by an order of magnitude in the last ten years. Present thermal
batteries, using lithium anodes and metal sulfide cathodes, are capable of performing
applications where only less rugged and more expensive silver oxide/zinc or
silver/magnesium chloride seawater batteries could serve previously. Additionally,
these batteries are capable of supplanting lithium/thionyl chloride reserve batteries
in a variety of specifically optimized designs.

Increases in thermal battery energy and power density capabilities are not
projected to continue with the current available technology. Several battery designs
are now at the edge of feasibility and safety. Since future naval systems are likely to
require continued growth of battery energy and power densities, there must be
significant advances in battery technology. Specifically, anode alloy composition and
new cathode materials must be investigated to allow for safe development and
deployment of these high power, higher energy density batteries.
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INTRODUCTION

The Electrochemistry Branch (Code R33) of the Naval Surface Warfare Center
is continually evaluating thermal battery technology for advanced naval systems. A
thermal battery is a primary battery whose electrolyte is a solid and nonconducting
salt at room temperature. The electrolyte is rendered molten by a pyrotechnic heat
source which is an integral part of the battery cell stack. Battery activation and
internal thermal equilibration to its operational temperature of approximately 500°C
normally occur within 0.5 second of initiation. It is primarily the high conductivity of
the electrolyte at this elevated temperature that allows the battery to be discharged
at high rates. This class of battery technology is considered a reserve type battery
since it is inactive until the pyrotechnic is initiated (normally accomplished by an
-lectric pulse to a squib). Once activated in this manner, the battery will only remain
active for its particular design life and cannot later be "reactivated"; as such, it is a
one-shot device. A flow chart of the activation sequence is given in Figure 1. Figure
2 is a thermal battery cross section. Although the term "thermal battery" refers to a
family of batteries which include a variety of specific chemistries (see Table 1), this
discussion will focus on the lithium/iron disulfide chemistry because of its higher
energy and power densities. The overall cell reaction between anode and cathode
material for the lithium/iron disulfide system is given below:

2Li + FeS 2 -- Li 2S + FeS

Thermal batteries are very application specific; they are designed and hand
assembled to meet very specific electrical and environmental parameters. Before a
battery can be accurately designed, requirements such as electrical performance
(current, voltage regulation, activation delay, electrical noise, operating life, etc.),
battery activation, environmental conditions, and mounting provisions must be
completely defined.

Thermal batteries are primarily used where one of the following conditions
occurs: (1) an application demands a very long shelf life (up to 20 years) with no
battery maintenance, (2) a high power density is required, or (3) an application which
requires a very rugged design. Some advantages and disadvantages of the thermal
battery system are given in Table 2.

In the early 197 0's, lithium thermal batteries began being retrofitted into
existing applications (such as those filled by other thermal batteries or reserve, silver
oxide/zinc batteries). Because of an inherently superior power density, requirements
were usually met with relative ease. However, recent battery development efforts
have served to highlight design areas of concern when pushing the technology to its
limits. These limits include maximizing power density, energy density, and overall
energy content. This report will examine these limits as they relate to present
lithium thermal battery technology, and discuss routes to improve these systems.
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DISCUSSION

Figure 3 is a Ragone plot of a variety of power sources indicating power density
versus energy density. As can be seen, the Li-FeS2 system has very little competition
for high power applications (> 500 W/kg). However, emerging naval applications are
requiring even higher power densities. For example, one projected sonobuoy
application requires > 2000 W/kg. The problem of attaining a high power density is
made worse by specifications that simultaneously require a high energy density. (The
same sonobuoy application requires an energy density in excess of 13 Wh/kg.)
Presently, there are definite limits to what power densities can be achieved and even
more restrictions on what energy densities can be maintained. Table 3 lists
performance limits that have been demonstrated in actual batteries, along with the
most common performance values found in production batteries. It should be noted
that the high end of almost any of the demonstrated limits listed in Table 3 can be
reached only at the expense of other characteristics. The factors that limit energy
and power density are discussed below.

Energy density is limited by the very nature of the battery; most of the battery
consists of support structures such as the can, header, connector, insulation,
activation mechanism, pyrotechnic heat source, binder materials, and electrolyte. In
addition, because elemental lithium melts far below the operational temperature of
the battery, anodes are made either as an alloy with aluminum or silicon, or held in a
matrix of fine iron particles. Consequently, only 20 to 40 percent of the anode is
lithium (the remainder being inactive). Also, to provide acceptable voltage
regulation, the active cathode material (FeS2) is normally proportioned at a 10:1
ratio of the active lithium available. It is estimated that a completed battery consists
of less than 35 percent active electrochemical constituents. Therefore, for the entire
battery to realize significant gains in energy density, large increases in the active
electrochemical constituents must be made. Increased cel thicknesses tend to result
in an increased overall energy density, but as Figure 4 indicates, this benefit quickly
reaches a plateau. Increased cell mass also slows the activation process and limits
the practical current density due to increasing resistivity during discharge. But
more importantly, cell mass is dictated by the electrical requirements placed on the
battery and cannot arbitrarily be changed in an attempt to increase energy density.
Therefore, the only way to improve energy density is to make some very major
changes in the present thermal battery system. Such changes might include
alternate cathode materials, an improved FeS2 cathode material, or an alternate
lithium alloy that contains a higher percentage of lithium allowing discharge at a
higher potential. These alternatives will be addressed below.

Power density as determined at the battery level is a function of the current
density at the electrode, cell thickness (capacity), cell size, and cell duty cycle.
Although very high power pulses can be taken of short duration (thus, yielding a
seemingly extraordinary power density figure), we will limit our examination to
batteries capable of extended high power discharge. In addition, we will not consider
cell thickness in detail, as it is defined by the total energy requirement; as previously
discussed, energy density cannot be improved easily. Discharges at an extremely
high current density pose several problems. First, as shown in Figure 5, voltage will
be depressed linearly with increases in current density. This is often intolerable due
to voltage regulation constraints on the battery. High current densities reduce
delivered energy density through inefficient electrochemical utilization. Figure 6
indicates useful power density gains can be had by using current densities of up to

2
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60 A/in2. However, current densities of this magnitude can only be sustained for
short periods of time (0.1 to 2.0 seconds), after which either a severe drop off in
current or voltage will occur. Capacity (energy) loss is also a major concern. Since we
have already established that the overall energy density of thermal batteries is
strongly tied to the small portion of the battery that will actually be discharged, it is
obvious that as much of the active materials as possible must be used. But,
discharging a thermal battery at rates above approximately 20 A/in 2 results in
severe capacity losses. Figure 7 is an idealized graph of energy density delivered
versus current density. When designing batteries for actual naval applications, these
capacity losses almost always dictate a current density ceiling of 7 to 20 Jin2 for
extended discharges.

Other issues that limit volumetric power and energy densities as measured at
the system level are linked to form factor restrictions. Because the electrochemical
components start out as powders, pellet formation requires uniaxial compression
under high pressure (16 to 40 tons/in 2 ). This processing step places two restrictions
on a completed battery: (1) due to the problems associated with pressing noncircular
shapes, this process dictates for ease, cost, and reliability of manufacture that most of
the designs will be right circular cylinders (because the cell parts are circular) and
(2) because a cell size of 6 inches in diameter requires a press of 300 to 1000 tons
(depending on cell thickness), battery diameters are presently limited to about that
level. Volumetric power and energy densities are lost due to poor packing efficiency
of the right circular cylinder. Presently, several designs use rectangular parts to
increase volumetric power and energy densities (one example being a 77 Wh/kg,
275 W/kg battery), but do so at a cost of manufacturability. In addition, this type of
design usually suffers apenalty in gravimetric energy density (a non-cylindrical
design has to be more robust to withstand the internal pressure developed during
discharge, translating into a heavier case weight).

Routes to higher specific energy and/or power include the following:

(1) Use of lower melting point or lower resistivity electrolytes.
(2) Use of more thermally stable cathodes.
(3) Use of more energetic pyrotechnic sources.
(4) Use of advanced structural alloys or composites.
(5) Development of higher voltage cathodes.
(6) Development of better insulations.

Each of these will be discussed in detail below.

Use of lower melting point electrolytes can help improve energy density. This is
accomplished primarily by decreasing the amount of pyrotechnic heat source
required in raising the battery to its operating temperature. Table 4 lists the various
electrolytes commonly used along with their melting points and resistivity.1
Although use of these electrolytes can be effective for certain applications, lower
melting point electrolytes will not normally improve power density since the
conductivity of these electrolytes is usually lower (with correspon ing ohmic voltage
drop). While lower resistivity electrolytes (such as the LiF-Li C-LiBr system) are
superior for use in high power applications, their relatively high conductivity at room
temperature may cause problems that include shortened shelf life.

Use of more thermally stable cathodes (>600'C) would offer several benefits.
One such benefit would be a higher allowable battery operating temperature, thus, a
corresponding gain in electrolyte conductivity and power. Another benefit stems

3
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from safety and reliability concerns. Batteries designed for higher current densities
can suffer from various failure modes that include localized heating within the
battery. Localized increases in temperature can serve to increase the rate in which
battery components thermally decompose. Thermal decomposition occurs with a
corresponding release of additional heat. This cycle can lead to localized or total
battery thermal runaway that might include a battery venting or more severe
failure. A higher decomposition temperature cathode would allow either higher
current densities or a higher operating temperature without these events occurring.
One cathode that has been examined is synthetic FeS2. Commonly used FeS2 cathode
material is derived from naturally occurring pyrite deposits or as a by-product from
the processing of base or noble metal ores. Thus, the commonly used material may
vary in composition, purity, and particle size greatly depending upon source and lot.
The synthetic material has highly uniform physical and chemical properties. In
addition, it has six times the surface area (offering an improved rate capability), and
a higher thermal decomposition temperature. 2 Figure 8 is a comparison of synthetic
and natural FeS 2 cathodes at two different current densities. Cost of the synthetic
material is higher, but would not increase battery cost significantly.

Use of more energetic pyrotechnic materials would of course reduce the amount
of material required to raise the battery to operating temperature. One class of
higher performance heat source is a nickel-titanium based fuel mix. Advantages are
rapid burn rate propagation (> 10 inch/sec) and gasless combustion with high flame
temperatures and energy release per volume andmass. Problems associated with
these materials are cost, toxicity, and sensitivity to ignition during battery
manufacture. An additional problem associated with advanced exothermic sources is
the limited ability of the battery anode and cathode materials to tolerate
exceptionally energetic thermal sources without cascading into thermal runaway.

Use of advanced structural alloys or high temperature composites for the
building of battery cases and header would offer weight advantages. Although little
volume could be saved, overall gravimetric energy and power densities would
improve slightly (5 to 15 percent demonstrated). Titanium based materials are
normally thought of as the chief replacement materials due to superior strength and
melting point. However, due to the higher cost and difficulties in perfecting the
hermetic seal technology for battery terminals, the moderate energy and power
density gains that can be achieved have not been realized to date.

Development of higher voltage cathodes have been pursued for some time.
Candidate cathode materials are listed in Table 5. Promising materials are those
with either an increased thermal decomposition temperature or a higher theoretical
energy density. However, none of the systems offers trouble-free gains. The CuF2
and the CuCl2 systems have low practical energy densities, and present electrolytes
are incompatible with the CuF 2 system due to the high voltage. The MnO2 system
has a low decomposition temperature, and the (CF). material has both a low
decomposition temperature and a low volumetric energy density. The VOx material
has a slightly higher resistance than is desired and is very difficult to manufacture.
The CoOn is difficult to manufacture and is suspected of being carcinogenic.

Development of improved insulations includes vacuum based technologies and
aerogel ("tfoamed" ceramic materials). However, these materials offer only small
gains (present insulators are quite good) compared with many problems their use
oses. These problems include high cost, handling issues, and shelf life (for vacuum
ased insulators). It is not expected that these alternatives will come into wide use

within the foreseeable future.
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SUMMARY AND CONCLUSIONS

Advanced materials and engineering can help improve present thermal battery
technology. Gains would be seen in energy and power densities and/or safety of hirh
power batteries. However, most routes to significant increases in energy and power
density involve breakthroughs in present technology. Of the possible improvements
discussed above, the examples that could most easily be incorporated are the
synthetic FeS2 and advanced structural materials.

5
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FIGURE 1 THERMAL BAT7TERY FUNCTIONAL BLOCK DIAGRAM
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TABLE 1. TYPES OF THERMAL BATTERIES

Electrochemical System Typical Cell Cell Characteristics and Applications
(Anode/Electrolyte/Cathode) Voltage

Systems Used in New Designs:

Li/LiCI-KCIIFeS 2  1.6 to 2.2 Highest capacity cell, low electrical
noise, long service life.

Ca/LiCI-KCI/K 2Cr 2O 7  3.3 Short activation time.

Old Systems Still in Use:

CaILiCI-KCI/W0 3  2.4 to 2.6 Used for fuse applications with low
shock and vibration.

CaILiCI-KCI/CaCrO 4  2.2 to 2.6 Used for high shock and vibration
and short operating life.

Mg/LiC]-KCI/V 2O5  2.2 to 2.7 Used for high shock and vibration
and short operating life.

TABLE 2. ADVANTAGES AND DISADVANTAGES OF THERMAL BATTERIES

Advantages Disadvantages

Long storage life Short activated life

No maintenance device High Surface Temperature

No self discharge Nonlinear Output Voltage

High power density One shot device

Wide operating temperature Hand assembled, high unit cost

Extremely rugged

No external heating required

No outgassing

High reliability

Low life cycle cost

Fast activation

14



NAVSWC TR 91..614

TABLE 3. THERMAL BATTERY PERFORMANCE LIMITS

Limits Demonstrated Most Common

Discharge Voltage 1.5 to 2000V 10 to 40V

Current Density 0.0 to 12 Amp/cm 2  .01 to .1 Amp/cm2

Discharge Life 0.05 to 7200 seconds 5 to 180 seconds

Activation Time 0.005 to 30 seconds 0.3 to 1.0 second

Voltage Regulation 5 to 70 percent of Vmai 20 to 30 percent of Vmai.

Cell Diameter 0.25 to 16.0 inches 1.0 to 3.0 inches

Battery Length 0.20 to 48.0 inches 1.5 to 8.0 inches

Battery Mass 15 to 62,000 grams 100 to 7000 grams

Specific Energy 0.2 to 75.0 Whlkg 11.0 to 50 Whlkg

Specific Power 0.0 to 46 KW/kg 138 to 1900 W/kg

TABLE 4. AVAILABLE ELECTROLYTES

MligPoint Resistivity Ohm-cm at 500*C

Melting35 wt% MgO Binder

iCI. KCI 350*C 0.85

LiBr-KBr-LiCI 330*C 1.15

LiBr-KBr-LiF 280*C 0.95

LiF-LiCI-LiBr 440*C 0.55

ILiF-LiC1-LiBr-Lil 340*C 0.45

15
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TABLE 5. ALTERNATE CATHODE MATERIALS

Cahoe Theoretical OCV with Decomposition/ Theoretical
Cahoe Lithium Anode Melting Point Specific Energy

CuF 2  3.54V 950*C 1650 Wh/kg

MnO2  3.5V 535*C 1005 Wh/kg

CUC12  3.IV 620T 1125 Wh/kg

(CF)" 3.1V 580Cto 640C 2180OWh/kg

V0 1, 2.7V 1200*C 1100 Wh/kg

CoOO, 3.9V 900*C 550 Wh/kg

16
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